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1. INTRODUCTION 

Fiber reinforced composite materials offer significant 

advantages in terms of strength-to-weight and stiffness-to-weight 

ratios in constructing aerospace structures. However, their 

effective use may be limited by the efficiency and reliability of 

the joining methods used in the construction. Mechanical fastener 

holes weaken the composites significantly, and some of the advantage 

in weight saving may be lost in strengthening these holes. Adhesive 

bonding offers a viable alternative with a number of potential 

advantages such as (1) higher joint efficiency, (2) no strength 

degradation of basic composite, (3) less expensive and simpler 

fabrication techniques, and (4) lower part count and maintenance 

cost. Currently, most aerospace industries are hesitant to use 

adhesive bonding in joining primary structures. This is due partly 

to the lack of understanding of adhesive bond behavior, 

particularly, under conditions of repeated loading over an extended 

period of time. The objective of the present paper is to contribute 

toward a better understanding of the adhesive debond growth behavior 

by using fracture mechanics concepts. 

Earlier, the fracture mechanics concept of strain energy release 

rate was used to model the debond growth under cyclic loading by 

Roderick, Everett and Crews [l] while studying composite-to-metal 

joints. The rate of debond growth was correlated to the total 

strain energy release rate. The total strain energy release rate, 

GT, in adhesive debonding may be composed of three components: 



opening mode GI, sliding mode G11,and tearing mode GIII. However, in 

most cases of practical adhesive joints, the strain energy release 

rate is composed of only GI and GII. Two types of specimens have 

been commonly used in the past for debond studies : (1) Double 

Cantilever Beam (DCB) specimen to study pure mode I behavior and (2) 

Cracked Lap Shear (CLS) specimen to study mixed mode I and I1 

behavior with GI/GII in the range of 0.25 - 0.5, [2-61. Various 

investigators of the debond behavior have used different kinds of 

adherend and adhesive thicknesses in DCB specimens in their studies. 

Whereas considerable attention has been devoted in the past to the 

influence of the bondline thickness, little information exists on 

the influence of adherend thickness. A change in adherend thickness 

would result in change of stress state ahead of the debond tip, and 

it is of interest to examine how this would influence the debond 

growth behavior and static fracture toughness. 

Mall, Johnson, and Everett [2] studied the debond growth in CLS 

specimens with quasi-isotropic graphite-epoxy adherends and two 

adhesives. They found that even though the debond grew in mixed 

mode (0.25 < GI/GII < 0.38), the debond growth rate correlated 

better with the total strain energy release rate than with either GI 

or GII alone. Mall and Johnson [3] further examined this 

correlation with experiments on DCB (mode I) specimens and found 

that the correlation of debond growth rate with GI = GT in DCB 

specimens agreed with that of GT in CLS specimens. These 

experiments lead to an hypothesis that the total strain energy 

release rate is the governing parameter for the debond growth in 
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adhesive joints. The practical significance of such a finding is 

that it will simplify design and analysis procedures, since total 

strain energy release rate is much easier to determine than the 

individual components. These studies on the mixed mode behavior 

have demonstrated the validity of the hypothesis under predominantly 

mode I1 conditions existing in C L S  specimens (GI/GII < 0.38) and the 

pure mode I conditions in the DCB specimen. It needs to be verified 

in other cases of mixed mode loading. 

The purpose of this paper is twofold: (1) to investigate the 

influence of adherend thickness on debond growth under static and 

fatigue loading and (2) to study debond growth in mixed mode under a 

predominantly mode I loading (GI/GII> 5.6). Experiments were 

conducted on DCB specimens of various thicknesses. Mixed mode was 

introduced by making the two adherends of different thicknesses thus 

making the specimen unsymmetric. The influence of various 

parameters is ascertained by measuring fracture toughness (critical 

strain energy release rate) in static loading and cyclic debond 

growth rates in fatigue loading. Analysis by the Finite Element 

Method (FEM) was used to determine individual components of strain 

energy release rate and to interpret other results. 
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2. EXPERIMENTS 

2.1 Specimen, Materials and Preparation 

The double cantilever beam specimen as shown in Fig. 1 was used 

in the present study. When the two adherends are of equal thickness 

the specimen is 'lsymmetricll and has pure mode I behavior under the 

loads shown in the figure. By making one adherend thicker than the 

other, the specimen can be made llunsymmetricll introducing a mixed 

mode behavior under the same loading conditions while maintaining a 

predominantly mode I situation. For the present work, adherends 

were made of unidirectional graphite-epoxy (T300/5208) * composite 

and the adhesive used was EC3445**, a thermosetting paste adhesive 

with a cure temparature of 121 degrees C. The material properties 

of the unidirectional graphite-epoxy adherends were obtained from 

Reference [ 7 ] .  These are presented in Table 1. The EC3445 adhesive 

is the paste version of the AF-55 adhesive film; therefore, the 

Young's modulus of EC3445 was calculated from the data on AF-55 by 

assuming the adhesive to be an isotropic material with Poisson's 

ratio of 0.4. These properties taken from Reference [2] are also 

presented in Table 1. 

T300/5208 supplied by Hexcel Corp., California, USA. 

EC3445 is manufactured by 3-M Corp., Minnesota, USA. 

* 
** 
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Three panels, one each of 8, 16, and 24 plies thickness, of 

unidirectional graphite-epoxy (T300/5208) were first fabricated. 

Strips of width 25.4 mm (1.0 in) and length 254 mm (10.0 in) were 

cut from these panels. Symmetric (8-ply to 8-ply, 16-ply to 16-ply, 

24-ply to 24-ply) and unsymmetric (8-ply to 16-ply, 8-ply to 24-ply, 

16-ply to 24-ply) DCB specimens were fabricated by bonding two of 

these strips together with EC3445 adhesive using a conventional 

secondary bonding procedure. Nominal adhesive thickness was 

maintained at 0.10 mm (0.004 in) by random sprinkling of a small 

volume fraction (less than 0.1%) of glass beads of 0.10 mm diameter. 

An initial debond was introduced by inserting a Teflon film 0.0125 

mm (0.0005 in) thick during the bonding procedure. The length of 

this initial debond was kept 25.4 mm (1.0 in) for thinner specimens 

and 50.8 mm (2.0 in) for thicker specimens to allow similar loading 

ranges. Initially, two aluminum tabs 0.5 mm thick were bonded at 

the ends of DCB specimens (see Fig. la) to facilitate application of 

load. room temperature cure adhesive was used for bonding these 

tabs. These tabs debonded in certain cases and also introduced 

additional constraints at the ends. Subsequently, steel hinges were 

employed instead of the aluminum tabs (see Fig. lb) which led to a 

very satisfactory performance. Virtually all the results reported 

herein are from specimens using the steel hinges. 

A 
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2.2 Testing Procedure 

The objective of the test program was to determine two 

characteristics: (1) the critical strain energy release rate in 

static loading and (2) the debond growth rate under cyclic fatigue 

loading. Both the static and fatigue tests were carried out in the 

same set-up as described below. 

All specimens were tested in a closed-loop electro-hydraulic 

test machine specially equipped to measure and control small testing 

loads (less than 225 N or 50 lb). All static tests and most fatigue 

tests were performed in the displacement control mode. For fatigue 

tests, cyclic loads were applied in both load and displacement 

control mode to ascertain the difference in the two procedures. In 

such tests, it was found convenient to apply load control at smaller 

crack-lengths (when loads are comparatively large and displacements 

small) and displacement control at larger crack-lengths (when loads 

are comparatively small and displacements large). Both edges of the 

specimen were coated with white brittle fluid (in this case 

typewriter correction fluid ) to aid in visually locating the debond 

tip. Fine visible scale marks were put on the edges of the specimen 

to aid in the measurement. The debond tip was observed through 

microscopes having a magnification factor of 20. The magnification 

and the fine scale helped to locate the debond tip within 0.25 mm 

(0.01 in) accuracy. The debond length was observed on both sides of 

the specimen. The mean difference in readings on the two sides was 

less than 5%, and the maximum difference was 15% of the debond 
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length 

as the average of readings on both sides of the specimen. 

(12 mm over a width of 25.4 nun). The debond length was taken 

During the static fracture toughness tests the crosshead speeds 

were adjusted to obtain strain rates normal to the crack surface in 

the adhesive at the crack tip in the range of 0.001-0.0025 per 

minute for each test. Since the stresses at the crack tip in a DCB 

specimen are inversely proportional to the square of the length, the 

crosshead were increased as the square of the debond length 

to achieve nearly the same crack tip strain rate for all As 

the displacement was applied, the onset of growth resulted in a 

deviation from linearity in the load-displacement curve. After the 

onset of growth was observed, the specimen was unloaded at the same 

crosshead speeds. 

speeds 

tests. 

For fatigue tests, cyclic loads were applied at a frequency of 3 

Hz. This frequency was chosen to facilitate comparison with the 

earlier data [2,3]. Constant amplitude cyclic loading was applied 

with the ratio of minimum to maximum load (or displacement) of 0.1 . 
In the load control mode (constant load amplitude), the debond 

growth rate increases as the debond grows whereas in the 

displacement control mode (constant displacement amplitude) the 

growth rate decreases with the growth of the debond. Therefore, in 

the load control mode cyclic load amplitude was chosen to give very 

slow growth rates (1-5 nm/cycle) to start with and maintained until 

the debond growth rates were too fast to be accurately or 

controlled (approximately 0.05 mm/cycle). The load amplitude was 

measured 
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then reduced for a further increment of the debond growth starting 

with the slow growth rate. On the other hand, in the displacement 

control mode cyclic displacement amplitude was chosen to give high 

but controllable and measurable debond growth rate (approximately 

0.05 mm/cycle) to start with and was maintained until the growth 

rate became very slow (1-5 nm/cycle). The displacement amplitude 

was then increased for a further increment of the debond growth 

starting with the high growth rate. Static tests were usually 

conducted at the changeover from one amplitude to the This 

also provided the required sharp crack for the static tests. Debond 

length (a), number of load cycles (N), and the applied load (P) or 

displacement (v) were monitored throughout the tests. The crack 

growth data taken immediately after a static fracture test was not 

used in the calculation of the crack growth rate. Load-displacement 

records were taken at suitable intervals of debond length. 

other. 

The values of the strain energy release rates were calculated 

from the recorded load displacement relationship and the applied 

loads. The record of debond lengths at various numbers of cycles 

provided data for the calculation of the debond growth rate da/dN. 

The details of the computational procedures are given in the next 

section. 
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3 .  ANALYSIS 

As reported 

were obtained at 

energy release 

in the earlier section, load-displacement records 

several debond lengths. To obtain the strain 

rate, the compliance of the specimen was calculated 

at each debond length from the load-displacement record. The total 

strain energy release rate (GT) is related to the compliance (C) by 

the relation 

GT = .5  (P2/b) dC/da (1) 

A simple strength of materials analysis derived from linear beam 

theory for the symmetric DCB specimen [ 3 , 9 ]  gives the compliance as 

C = 8 a3 / bEt3 ( 2 )  

for plane stress conditions where E is taken as the longitudinal 

modulus [ 8 ] .  This expression is valid as long as the modulus is 

taken as the apparent modulus as discussed by Ashizawa [lo]. 

Ashizawa has also presented correction factors for the flexural 

modulus. The unsymmetric DCB specimen can also be analyzed in a 

similar fashion by treating each half as a cantilever beam having 

different flexural stiffnesses. The compliance C is then given by 

C = 4 (a3/bE) (l/t13 + l/t23). (3) 
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As seen from the E q s  (2,3), the value of C is very sensitive to the 

measurements of thickness and crack length. Moreover, correction 

factors need to be applied to the modulus E as shown by Ashizawa 

[lo]. Hence, these equations cannot be directly used to analyze 

experimental data. Since, in general, the compliance is proportional 

to the cube of the crack length a, a relation of 

c = A (a13 (4) 

was fitted through the experimental data points by the method of 

least squares. The total strain energy release rate is then 

calculated using Eq (1). 

. A finite element analysis using GAMNAS, a program developed at 

NASA [ll], was also conducted for comparison with the beam theory 

and to calculate the stress state ahead of the debond tip. The 

virtual crack closure technique was used to calculate the strain 

energy release rates. Plane strain conditions were assumed to exist 

in the bondline. The finite element mesh was refined to the extent 

that further refinement resulted in essentially the same results. 

The GAMNAS program was also used to assess the effect of the 

adhesive bondline plasticity on the specimen load-displacement 

behavior. The adhesive was modeled as a bi-linear elastic-plastic 

material with a yield strength of 32 MPa. The elastic modulus was 

1.81 GPa and the plastic modulus was taken as 0.40 GPa. Only the 24 

to 24 ply specimen was analyzed because it showed the greatest 

effect of loading mode on resulting debond growth rate. 
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4. RESULTS AND DISCUSSION 

In this section the data obtained in the static and fatigue 

tests are analyzed and the results are discussed. First, the 

determination of basic parameters, namely compliance, strain energy 

release rate, and debond growth rates, is discussed. These and 

other data are then used to discuss various aspects such as the 

influence of load or displacement control mode, the influence of 

adherend thickness, and the influence of mixed mode on static and 

fatigue debond growth. 

4.1 Determination of basic parameters 

The static tests yielded the compliance data and the critical 

loads. The relation of E q  (4) was found to fit very well with the 

experimental data as shown in Fig. 2. Data points are shown for a 

symmetric 24-ply to 24-ply and unsymmetric 24-ply to 8-ply 

specimens. Values obtained by FEM analysis are also shown in the 

figure. Although the FEM values show the cubic variation, they 

differ from the experimental values by as much as 12%. As noted 

earlier in the section on analysis, the compliance values are very 

sensitive to the measurement of thickness and debond length. In 

practice, the thickness of the specimen was not uniform. Other 

factors such as experimental errors in load control and compliance 

measurements could also contribute to this rather small difference 

between the analysis and experiment. 
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Linear FEM analysis with the debond placed in the middle of the 

adhesive yielded compliance values which showed the cubic variation 

with respect to a. Further, the geometric nonlinear analysis did 

not indicate any significant difference in either the compliance or 

the computed G values from the linear analysis. The maximum 

difference in GT was less than 3% for a debond length of 100 mm 

under maximum experimental load. A significant outcome of the FEM 

analysis was the individual values of GI and GII for the unsymmetric 

DCB. Maximum GII contribution was in the most unsymmetric case 

(24-ply to 8-ply) and was about 15% of GT. The GI/GI- ratios for 

the unsymmetric DCB specimens are shown in Table 2. The analyses 

did not show any significant variation in GI/GII with either the 

load or the debond length. 

The fatigue tests yielded the debond growth data. The values of 

the operating strain energy release rate (GT) at the center of the 

debond increment were calculated from the compliance relationship, 

Eq ( 4 ) ,  obtained by a least square fit of the compliance data. 

Plots of da/dN vs. GT were made and a least square fit was used to 

obtain the constants c and n in the relationship 

da/dN = c G T ~ .  (5) 

This equation was found to fit well for all data sets. Table 3 

gives the values of parameters c and n obtained for the various 

cases. The results obtained are discussed below. 
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4.2 Influence of Load/Displacement Control Mode 

Figures 3a, 3b, and 3c show the debond growth rate with the 

cyclic G values for symmetric DCB specimens with 8-, 16- and 24-ply 

adherends, respectively. The filled symbols and the solid lines 

refer to the data obtained in the displacement control mode whereas 

the open symbols and the broken lines refer to those in load control 

mode. If apparent threshold data were present, the threshold related 

data were not used in the determination of best fit line to 

the debond growth rate data. The control mode had little if any 

effect on the cyclic debond growth behavior in the case of the thin 

(8-ply) adherends, Fig. 3a, but the effect became more significant 

as the adherends became thicker as shown by the data for the 16-ply 

and 24-ply cases in Figs, 3b and 3c, respectively. Where the effect 

was significant, the displacement control mode resulted in a higher 

debond growth rate for the same operating strain energy release 

rate. This is consistent with the observation made earlier by Mall 

and Johnson [3]. 

points 

The GI values are calculated based on elastic material response, 

however, structural adhesives are both elastic-plastic and 

viscoelastic, In the displacement control mode the amount of debond 

tip opening and the resulting stress distribution ahead of the 

debond are rather constant for a given applied displacement because 

the displacements are controlled by the adherends. The data 

presented in Fig. 5b support this theory, the elastic GI values 

reasonably correlate the crack growth rate data for the different 
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thickness adherends. However, for the load control mode the debond 

tip may open further than calculated elastically and the stresses 

ahead of the debond may increase, resulting in a larger plastic 

zone. Perhaps this contributes in some way to the reason why the 

load control tests result in slower crack growth rates. 

The finite element analysis of the 24 'to 24 ply DCB specimen 

supported the fact that the specimen would open more under load 

control with the elastic-plastic adhesive properties than with the 

purely elastic adhesive properties. The analysis also showed that 

the displacement controlled tests with the elastic-plastic adhesive 

required less reactive load than a specimen with an elastic 

adhesive. However, at an applied GI level of 480 J/m2, the 

differences in the elastic and the elastic-plastic results were far 

less than one percent. This difference is too small to account for 

the observed behavior in Fig. 3c. The analysis implies that the 

stiffness of the adherend is controlling the load-displacement 

response of the specimen. The plasticity at the crack tip has 

relatively little influence on the over all specimen stiffness 

response. 

The 24-ply debond growth rate is as much as an order of 

magnitude less for the load controlled data than for the 

displacement controlled: or at a given debond growth rate, tests in 

load control require up to twice the G level. There is at the 

moment no explaination for this behavior using linear elastic 

fracture mechanics. 

-14- 

~~~ 



4.3 Influence of Adherend Thickness 

The higher flexural rigidity of the thicker adherends affects 

the stress distribution ahead of the debond tip. It is of interest 

~ to investigate whether this would affect the fracture toughness and 

debond growth rates. 

Figure 4 shows the results obtained in static fracture toughness 

tests with various symmetric DCB specimens. Two specimens of each 

type were tested at several debond lengths. The mean values and the 

range of scatter are shown in the figure. The numerals in the 

parentheses indicate the number of data points. It is observed from 

the figure that there is an increase in the mean value of G I ~  as the 

adherends become thicker. The change in G I ~  is more significant 

from 8-ply to 16-ply than from 16-ply to 24-ply. However, the 

changes in G I ~  are of the same order as the scatter in the data 

(particularly for the 24-ply case) and more information is needed to 

confirm this trend. Devitt, Schapery, and Bradley [12] have shown a 

similar thickness dependent interlaminar fracture toughness in 

glass/epoxy composites. They tested 8, 12, and 16 ply specimens. 

To study the influence of the adherend thickness on the cyclic 

debond growth, the data obtained in the fatigue tests are replotted 

in Figs. 5a and 5b. Fig. 5a shows the results for the load control 

mode and Fig. 5b for the displacement control mode. The influence 

of adherend thickness is much less in the displacement control mode 

than in the load control mode. Further, it appears that the thicker 
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adherends resulted in slower growth rates, particularly for low 

growth rates. Also, considering the scatter in the individual data 

sets (Figs. 3a, 3b, and 3c), it may be observed that the change of 

the adherend thickness from 16- to 8-ply affected the growth rates 

more significantly than the change from 24- to 16-ply. Thus, the 

influence may be more significant for thinner specimens. 

In Fig. 5b the present results are compared with the results 

obtained by Mall and Johnson [3] from cracked lap shear and DCB 

specimens made with the same adhesive and adherend materials. The 

present data correlate well with the GT data line but not to the GI. 

This supports the previous observations [3] that the debond growth 

rate these type structural adhesives is a function of the total 

strain energy release rate and not just the mode I component. 

of 

An attempt was made to interpret these results in terms of the 

stress distribution ahead of the crack tip. To facilitate a 

comparison of the amount of plastic deformation ahead of crack 

tip at the same value of the strain energy release rate 

(irrespective of the loads) in the different specimens, the von 

Misesls stress is plotted versus the distance ahead of the crack 

tip. The von Mises' stress is defined as 

the 

s, = (s,2+sy 2+sz2+sx*sy+sy*sz+sz*~~~ 0.5. 
( 7 )  

Figure 6 shows the variation of S, ahead of the crack tip of a 100 

mm long debond for the three adherend thicknesses tested. Each 
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specimen is loaded so that G is equal to a G I ~  of 1000 This 

data is useful for comparing the relative approximate length of the 

J/rn2. 

yield zone at fracture by assuming a value for the adhesive yield 

stress. The yield shear stress for EC3445 is about 33.2 MPa (4820 

psi)* which gives the normal yield stress of 66.4 MPa (9640 

psi). Assuming that the distance ahead of the crack tip at which 

S, decays to the yield stress is a reasonable approximation of the 

plastic zone ahead of the crack tip, we observe that the plastic 

zone size increases with the adherend thickness for the same applied 

elastic strain energy release rate. The rate of increase in the 

plastic zone size decreases as the thickness increases (i.e., the 

change from 24-ply to 16-ply is less than that from 16-ply to 

8-PlY) 

It may be speculated that more energy is dissipated by the 

plastic deformation of the adhesive as the debond grows in the 

thicker adherend case than the thinner one. Since the total strain 

energy release rates are the same for each case, the remaining 

energy available for crack extension (that is, the total energy 

minus the energy used for plastic deformation associated with the 

debond growth) is decreasing with increasing adherend thickness. 

This leads us to expect that the actual fracture toughness of the 

thicker adherend may be more than that of the thinner adherend. It 

* A. V. Pocius, Private Communication, 3M Company, St. Paul, 

Minnesota 55144-1000. 
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also follows that the thicker adherend specimens would show a slower 

debond growth rate for a given applied G. This agrees with trends 

of the experimental results in Figs. 4 and 5. 

Figure 7 shows the normal stress component ahead of the debond 

tip for each specimen type. These stresses are also from the GAMNAS 

finite element analysis. Each specimen is loaded such that GI is 

equal to 39 J/m2. The stresses are the same at the debond tip, as 

expected: however, the stresses are higher over a longer length for 

the thicker adherend specimen. 

Fig. 5 indicates that the thinner specimens would have lower 

values of threshold G for cyclic debonding. Since the design of 

bonded joints may be based on threshold values because of the large 

values of the exponent n [13], this effect may become important for 

thin adherends. An important implication of this result is that a 

choice of too thick a specimen for measurement of fatigue 

characteristics may overestimate the threshold G and fatigue life. 

However, the shift in debond growth rate due to adherend thicknesses 

is almost within the scatter band of the data. 

Shivakumar and Crews [14] have stated that the height of the 

plastic zone, not the area, is what influences the relative 

toughness. If this is true, perhaps a thicker adherend may cause 

high enough stresses to yield the composite matrix material above 

and below the bondline to a greater extent than a thinner adherend. 

This possibility was not explored in this study. 
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The examination of the fracture surfaces of the symmetric DCB 

specimen (see Fig. 8) revealed that the fracture remained mainly in 

the adhesive showing a cohesive failure of the adhesive material as 

in Fig. 8a. Occasionally, a few fibers were pulled from one surface 

to the other, particulary, at larger crack lengths (see Fig. 8b), 

but the failure was predominantly in the adhesive. 

4.4 Influence of the Mixed Mode 

The influence of the mixed mode in a predominantly mode I 

situation was studied using unsymmetric DCB specimens. Both static 

fracture toughness and fatigue debond growth rate tests were 

conducted on 8-ply to 16-ply and 8-ply to 24-ply specimens. These 

tests showed unexpectedly low fracture toughness values (see Fig. 9) 

and high debond growth rates (see Fig. 10a,b). On examination of 

the fracture surfaces, it was found that the debond in the adhesive 

quickly migrated to the thinner adherend and propagated as an 

interfacial failure and further on as delamination in the composite 

adherend for both the static and fatigue loading. These results are 

discussed below. 

The static fracture toughness values obtained as the debond 

migrated from the center of the adhesive layer to the interface and 

further into the adherend as a delamination are shown in Fig. 9. 

There is a continuous reduction in the fracture toughness as the 

migration of the debond proceeds. The zone in which the failure was 

fully in the adhesive was very small and at the beginning of the 
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test (near the teflon starter, see Fig. lla). The transition zone 

can be seen in Fig. lla only a little distance away from the crack 

starter. The delamination failure as shown in Fig. llb was seen 

everywhere else. The low toughness values corresponding to the 

delamination are somewhat higher than the delamination toughness 

values obtained in DCB tests on T300/5208 composites by earlier 

investigators [15,16]. However, as discussed in reference [13], 

even a small amount of mixed mode is expected to increase the total 

critical strain energy release rate by a significant amount for a 

brittle resin like 5208. This is reflected in the higher values of 

the delamination toughness in the present tests. 

High rates of crack growth were obtained in the fatigue tests on 

the unsymmetric specimens, as seen from Figs. 10a,b. Figure 10a 

shows the cyclic crack growth data for the 8-ply to 16-ply case, and 

Fig. 10b shows the same for the more unsymmetric 8-ply to 24-ply 

case. It is seen that the more unsymmetric case led to a steeper 

slope of the best fit line. Figure 10b also shows an earlier result 

on delamination of T300/5208 unidirectional composite from Reference 

[14]. Note that the slope of the line in the present case is 

comparable to the one corresponding to the delamination. The 

examination of the failure surfaces revealed that in the 8-ply to 

24-ply case, the debond migrated to the adherend almost immediately 

after the start of the test and propagated as delamination (a 

typical failure surface is shown in Fig. llb); whereas, in the 8-ply 

to 16-ply case, the transition to delamination was somewhat more 

gradual (failure surface as in Fig. lla). Because the debond growth 
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rate data consists of both debonding of EC3445 adhesive and 

delamination growth in the adherend matrix material 5208,the scatter 

in the 8-ply to 16-ply data is greater than that in the 8-ply to 

24-ply data (see Figs 10a,b). Thus, it is observed that the 

introduction of asymmetry and mixed mode has caused the debond to be 

pushed to the thinner adherend interface and even inside the 

composite adherend. This resulted in an undesirable combination of 

high fatigue growth rates, l o w  fatigue threshold, and low fracture 

toughness. 

It may be noted here that the earlier experiments on the CLS 

specimens [2,17] of the same adhesive-adherend system with 0-degree 

plies next to the adhesive showed cohesive failures in the bondline. 

These CLS specimens also had different adherend thicknesses which 

resulted in various mixed mode loadings. In the case of CLS 

specimens, GI/GII ratios were in the range 0.25-0.31 compared to 

5-24 for the unsymmetric DCB specimens. As previously discussed, 

the symmetric DCB specimens also.did not result in delamination of 

the adherend. The authors cannot explain at this time why a small 

amount of mode I1 in the unsymmetric DCB case would cause the debond 

to wander into the adherend. However, it appears that in the 

unsymmetric DCB case, the thinner adherend experienced higher 

bending stresses in the ply next to the adhesive than the thicker 

adherend; hence, it is more apt to experience fiber failure. The 

finite element analysis results indicate that the strain in the 

fiber to the adhesive approaches 0.01 as the GI approches the 

G I ~  of the EC3445 adhesive (850 J/m2). This, coupled with high 

next 
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interlaminar shear stresses due to the bending, makes the damage 

more prone to progress into the thinner adherend. 

Since the debond wandered into the thinner adherend and 

continued to grow as a delamination, the debonding behavior of the 

adhesive under the predominately mode I mixed mode loading could not 

be evaluated with the present set of specimens. 

5. CONCLUSIONS 

Symmetric and unsymmetric double cantilever beam (DCB) specimens 

were tested to investigate the effects of adherend thickness and 

mixed mode on debond growth in adhesively bonded composite joints in 

predominantly mode I situations. The tests were conducted under 

both load and displacement control. The adherends were 8-, 16- and 

24-ply thick and made from unidirectional graphite-epoxy (T300/5208) 

composite. The adhesive was EC3445. Static and fatigue tests were 

conducted to obtain fracture toughness and fatigue debond growth 

rates. The following conclusions were drawn from the present study: 

(i) The thickness of the adherend in double cantilever beam 

specimens influences the measured static fracture toughness of the 

adhesive. The thicker the adherend the higher the static toughness. 

The rate of increase in toughness decreases with increasing adherend 

thickness. The increase in average toughness (less than 20% between 

8-ply and 24-ply thick adherends) fell within the scatter of the 

data. 
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(ii) Cyclic debond growth rates are influenced by the adherend 

thickness. Thicker adherends produce slower debond growth rates. 

The thickness effects are greatest at low values of strain energy 

release rate. Thicker adherends result in higher threshold strain 

energy release rates. The observed adherend thickness effect is 

much greater for specimens tested in load control than it is in 

those tested in displacement control. 

(iii) The influence of thicker adherends in increasing fracture 

toughness and lowering crack growth rates appears to be related to 

the size of the plastic zone (stress distribution) ahead of the 

debond tip. The plastic zone is longer for thicker adherends. The 

thicker adherend specimens use a larger percent of the available 

energy to create the associated larger plastic zone, thereby leaving 

less energy to propagate the damage. This conclusion is only 

speculative because there are several unresolved issues. 

(iv) Load controlled double cantilever beam tests produced slower 

debond growth rate data than did the displacement controlled tests. 

A definite reason for this behavior could not be found. However, it 

too may be related to the stress distribution ahead of the debond. 

(v) The symmetric double cantilever beam specimens produced cohesive 

debond failures. The unsymmetric double cantilever beam specimens 

produced debonds that quickly grew to the adhesive/adherend 

interface then became a delamination in the thinner adherend. Since 

the 5208 matrix material has lower fracture toughness and higher 
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delamination growth rate than the EC3445 adhesive, this damage 

migration markedly decreases the damage tolerence of the joint. 

(vi) cyclic debond growth rates data from the symmetric double 

cantilever beam specimens and cracked lap shear specimens specimens 

correlated better with GT than with GI, supporting the hypothesis 

that total strain energy release rate is the governing factor f o r  

cyclic debond growth in tough adhesives. The hypothesis could not 

be tested for the mixed mode unsymmetric double cantilever beam 

specimen because of the wandering of the damage into the adherend. 

The 
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Table 1. Elastic Properties of adherend and adhesive 
Materials. 

v12 

1. Adherend 
T300/5208 131.0 13.0 6.4 0.34 
Unidirect- 
ional 

2. Adhesive 1.81 1.81 0.65 0.40 
EC3445 

Table 2. Mixed mode ratios for the unsymmetric DCB 
specimens. 

Configuration GIIGII GI/GT 

8-ply to 24-ply 5.67 
8-ply to 16-ply 11.50 
16-ply to 24-ply 24.00 

Symmetric - 

0.85 
0.92 
0.96 
1.00 

Table 3. Crack growth rate parameters c and n in the 
relation da/dN = c ( G T ) ~  m/cycle with 
DG in J/& 

Configuration Control C n No. of 
tl t2 Mode Data 

Points 
Plies Plies 

Load 3.3813-19 4.801 36 
8 8 Disv 6.124E-20 5.083 36 

Both 2.658E-19 4.831 72 

16 16 

24 24 

Load 3.528E-19 4.980 32 
pisv 3.2073-23 6.282 ' 42 
Both 5.0803-24 6.495 74 

Load 1.3683-21 5.598 19 
pisv 1.7373-24 7.165 36 
Both 8.009E-20 5.157 55 

8 16 (*I Disp 4.0763-21 6.178 70 

62 8 24 (**) Disp 8.601E-38 13.815 

(*) Failure at the interface/ Delamination in the adherend. 
(**) Delamination in the adherend. 

29 



Piano 

, 

, 

8 

F i g .  1 - Specimen geometry and nomenclature. 
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t o  t h e  l eng th  o f  t h e  p l a s t i c  zone ahead o f  t h e  debond t i p .  
specimens, i t  was f u r t h e r  found t h a t  displacement c o n t r o l  t e s t s  r e s u l t e d  i n  h igher  
debond growth ra tes  than d i d  l oad  c o n t r o l  t e s t s .  Whi le t h e  symmetric DCB t e s t s  always 
r e s u l t e d  i n  cohesive f a i l u r e s  i n  t h e  bondline, t h e  unsymmetric DCR t e s t s  resu l ted  i n  
the  debond growing i n t o  t h e  t h i n n e r  adherend and t h e  damage progress ing as delaminat io i  
i n  t h a t  adherend. This behavior r e s u l t e d  i n  much lower f r a c t u r e  toughness and damage 
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